General Report on Tunny


22H Page 69

Putting      j = 6            δi6 = Πi6
  ∴ PB(ΔDi + lim = cross) = Πi
∴ (for Χ2 = lim)     PB(ΔD2 + → x) = Π2 (H9)

  Now
 
[illegible] → dot (nearly always)
[illegible] → cross (for punctuation)

  ΔD2 → dot  
    ΔD2 + Lim → dot    (R1 p. 9) (H10)

Figs. 22 (VI)(VII)(VIII) give scores [illegible] for the various ΔD counts shown.

The following table gives values for two impulse ΔD proportional bulges against limitation dots and crosses.

  δ..≡ PB(ΔDi = .    ΔDj = . | L = .)  
  δ..≡ PB(ΔDi = .    ΔDj = . | L = x)  
  δ..≡ PB(ΔDi = .    ΔDj = .) and so on

 
δ..
δxx
δx.
δ.x
{β(Π.. + Πxx) - β(Π.. - Πxx)}
{β(Π.. + Πxx) + β(Π.. - Πxx)}
{-β(Π.. + Πxx) - β(Πx. - Π.x)}
{-β(Π.. + Πxx) + β(Πx. - Π.x)}
δ..
δxx
δx.
δ.x
(1+β) {-β2.. + Πxx) + 2βΠ.. + (3Π.. + Πxx)}
(1+β) {-β2.. + Πxx) + 2βΠxx + (3Πxx + Π..)}
(1+β) {+β2.. + Πxx) + 2βΠx. + (3Πx. + Π.x)}
(1+β) {+β2.. + Πxx) + 2βΠ.x + (3Π.x + Πx.)}
δ..
δxx
δx.
δ.x
+½β(Π.. + Πxx)
+½β(Π.. + Πxx)
-½β(Π.. + Πxx)
-½β(Π.. + Πxx)

Fig. 22(XII)

The workings are left to the reader (similar workings are given on R4 p. 80)

Two results should be noticed.

(i) δ.. = δxx and δ.x = δx.. Whatever the relative values of Π.. and Πxx. This shows that the benefits of counting against Χ2 limitation


< previous

next >